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1. INTRODUCTION

QUITE a number of investigations are devoted to the problem of generation of small periodic
oscillations of the system of ordinary differential equations

2 = F(A, x) (F(1,0)=0) (1)
dt

depending on a parameter (for an extensive bibliography see [1]). The greater part of these
investigations exploit information about not only the linear terms of the right-hand member
of the system (1), the Ijnear operator F (4, 0), but also information about the terms of higher
orders in the Taylor expansion in x of the function F(A. x). With the help of such information
one can answer the questions on the number of arising self-oscillations, their stability, their
dependence on a parameter, etc. Proofs of corresponding assertions use, as a rule, an analytic
technique such as varied forms of the implicit function theorem, the theory of invariant
manifolds, and the like.

At the same time, in problems arising during the study of complicated physical, technological,
etc. processes, often the only rather complete information available is that concerning the
linear terms of the right-hand member of the system (1). In such circumstances it is very difficult
to apply an analytic technique for studying the problem of generation of self-oscillations.

Yet as things turn out [2], in some cases the very fact of generation of small self-oscillations
can be picked out of information about the linear terms of the right-hand member of the
system (1). Of course, under lack of information about the high order terms in the Taylor
expansion in x of F(4, x) one can say next to nothing about properties of arising self-oscillations.

This article contains a topological proof of the Hopf theorem. In this proof the method of
parameter functionalization [3], introduced by Krasnosel'skii in another situation, has much
significance. Employment of topological considerations makes it possible to throw aside usual
assumptions of differentiability of the right-hand member of the system (1). This provides an
opportunity to investigate systems (1), the right-hand side of which contains, for example,
hysteresis-type or relay-type nonlinearities. The proof presented below goes through without
changes in the case of functional differential equations with lagging arguments [4]. We do not
present here the exact formulations of such assertions because our purpose is the demonstration
of the method. In [5, 6] the method of parameter functionalization has been applied to the
investigation of bifurcation of long-periodic solutions of differential equations and mappings.
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2. THE MAIN RESULT

From now on we shall assume that the parameter 4 in the system (1) is real.

We shall say that for 2 = A, generation of small periodic solutions of the system (1) with
periods close to T, takes place, if for every £> 0 there exists a A, in the interval (i, — &,
Aq + €) for which the system (1) has a nonzero T,-periodic solution x,(¢) (|T. — T, < €) lying
in the e-neighborhood of zero

”xE(I}H <E (=< i<w),

Let us suppose that the right-hand member of the system (1) depends continuously on A
and x in a neighborhood of the point {1,, 0} € R' x R" and admits a representation of the form

F(A,x) = A(M)x + a(h, x), (2)
where A(A) is a matrix and where the remainder term a(4, x) satisfies the condition
A x
lim latd. 5 _ 0 (3)
kb0 x|

uniformly with respect to A. Then as is easy to see the matrix A(4) depends continuously on
A in a neighborhood of 4, and the function a(A, x) depends continuously on A and x in a
neighborhood of the point {4, 0}.

Let the matrix A(Aq) have the purely imaginary eigenvalue iw, (w, # 0) which is simple.
Then as is known for 4 close to 4, the matrix A(4) has a unique eigenvalue u(A), that is close
to im,. Moreover, the function u(A) depends continuously on A in a neighborhood of A,.

THEOREM. Let the matrix A(A,) have no eigenvalues of the form 0, +2iw,, +3iw,, ... and
let the real part Reu(A) of the eigenvalue u(A) takes values of opposite signs in every
neighborhood of A,.

Then for A = 4, generation of small periodic solutions of the system (1) with periods close
to 21/ w, takes place.

The idea of the proof of the theorem (the method of parameter functionalization) is a fairly
simple one. First, we reduce the problem of the existence of periodic solutions of the system
(1) to the problem of the existence of solutions of some operator equation

x=Ulr,x)

that depends on the two-dimensional parameter v = {T, A} where T is an unknown period of
a periodic solution to be found. Afterwards we construct such a sequence of functionals {v,(x)}
that for each n the rotation of the vector field x — U[v,(x), x] on the boundary of some region
Q, (0 & Q,) is not equal to zero. Then the operator Uv,(x), x] has at least one nonzero fixed
point x,, in the region Q,. Evidently. this point is a nonzero solution of the equation

x=U(v,,x)

where v, = {T,, 4,} = v,(x,). It follows from this that for 1 = A, the system (1) has a nonzero
periodic solution x,(f) with the period T,. The functionals v,(x) and the regions Q, can be
constructed in such a way that Q, — 0, v,(Q,) — {27/ w,, Ao}. Hence A, — Ay, T,,— 21/, and
the amplitudes of the corresponding periodic solutions x,(f) tend to zero.
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3. PRELIMINARIES

Consider in a real Banach space E a linecar bounded operator V(v) which depends on a
parameter v from a Banach space N. Let the operator V(») x be completely continuous as an
operator from N x E into E, then the principal spectral properties of V() are the same as if
V(v) depended continuously on » with respect to the norm of the operators. This is a simple
but important fact, since lincar operators naturally arising in the theory of differential equations
in some cases do not possess the property of continuity on v with respect to the norm of the
operators but do possess the property of complete continuity on » and x. To a far greater
extent the same is valid for operators arising in the theory of differential equations with lagging
arguments.

Let us describe some spectral properties of the operator V(»). For details and proofs, see
[7]-

The basic spectral property of the operator V() contained in the fact that the spectrum of
V(v) depends continuously on v in the Hausdorff metric.

If u, is an isolated eigenvalue of the operator V(v,) then the Riesz’s formula

= :
P(v) =Re {"2;‘,’ [A1 — V(v)]'ldﬂ..

where y is a closed curve in the complex plane with u, in its interior and the rest of the
spectrum of V(v) in its exterior, defines for » = v, the real projector onto the generalized
eigenspace of y,. In virtue of continuity of the spectrum of V(») for every » close to », the
same formula defines some projector P(v) that commutes with V(»). Hence P(v) is projected
onto some V(»)-invariant subspace of the space E.

Rewrite Riesz's formula in the equivalent form

P(v) = Re{%ﬂ_[%[ﬂ.[— V(u')]‘]V(v)d).}.

From this one can easily see that P(v)x, the same as V(v)x, depend completely continuously
on » and x.

From the above properties of the projector P(v) and of the spectrum of V() one can derive
in a general way the other spectral properties of V(v). For example, if y1 is a simple eigenvalue
of the operator V(v) then the v close to v, the linear operator V(») has a unique eigenvalue
u(v), that is close to w,. This eigenvalue is simple, it and its eigenvector depend continuously
on the parameter. If the eigenvalue p, is not a simple one then for values of v close to v the
operator V(v) has not one but, generally speaking, a group of eigenvalues, that are close to
to. The sum of the multiplicities of these eigenvalues is equal to the multiplicity of w,.
Behaviour of these eigenvalues is highly complicated. For example, they may join, bifurcate,
change the order, etc.

We are most interested in the case when ug is a real eigenvalue of the order and multiplicity
2. In this case we shall say that u, is the eigenvalue of simple structure if in some neighborhood
of vy there exist continuous linearly independent real vectors g(v) and h(v) and a function
u(v) (complex, generally speaking) such that

V(v)ig(v) + ih(v)} = u(v){g(v) + ih(v)}. 4
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In this case we shall call the function u(v) the continuous branch of eigenvalues passing for
v = vy through the eigenvalue of simple structure w,,.

Let us present an example. Let V(vg) have the simple eigenvalue 277 and have no eigenvalues
of the form 0, =4, =67i,... Then the eigenvalue 1 of the linear operator " has the
order and multiplicity 2. This eigenvalue is of simple structure.

Let us consider an operator U(v,x) which is defined on a neighborhood of a point
{vy, 0} € R? X E and takes values in a real Banach space E. Let the operator U(v,x) be
completely continuous with respect to both variables and admit a representation of the form

U(v,x) = V(v)x + v(v, x),

where V(») is a linear bounded operator and where the remainder term v(v, x) satisfies the
condition
v(v,x
el

0
=0 x|

uniformly with respect to v from a neighborhood of »,. We should like to note that under
such conditions both the operators, V(v)x and v(v, x) depend completely continuously on v
and x (see, for example, [3]).

LEMMA. Let 1 be the eigenvalue of the order and multiplicity 2 of the linear operator V(v,)
and let this eigenvalue be of simple structure. Let in R* a sequence of Jordan curves {L,}
converging to v, exist. Let the rotation of the vector field 1 — u(»), where u(») is the continuous
branch of eigenvalues passing through the cigenvalue 1, be defined and not equal to zero on
each curve L,.

Then there exist v,— v, and x, — 0 (x, # 0) such that x, = U(»,, x,).

This lemma plays an important role in the proof of the theorem. A generalization of this
lemma for the case of n-dimensional parameter see in [4]. The proof of the lemma will be
presented in Section 5.

4. PROOF OF THE THEOREM

Let C([0, 7]; R") denote the Banach space of continuous R"-valued functions defined on the
interval [0, 7], where T = 27/w, + 1, with the topology of uniform convergence. Consider in
C([0, 7]; R™) an operator of the form

U(T, A; x)(t) = e“Wx(T) + J e=940) (2, x(s)] ds

0

which depends on two real parameters T and A. Here A(A) is the linear term and a(A, x) is the
remainder term (see (2)) of the right-hand member of the system (1).

Direct verification shows that x € C([0, 7]; R") is a fixed point of the operator U(T, 4; ) if
and only if x(#) is a solution of the system (1) that satisfies the condition x(0) = x(7'). This
condition means that x(¢) is a T-periodic solution of the system (1). Hence the theorem would
be proved if there existed T,— 2x/w, and 4,— A, such that the operators U(T,, A,; -) had
nonzero fixed points x, converging to zero. To prove it we shall use the lemma.

Let us verify if the operator U(T, 4; x) satisfies the lemma’s conditions.
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As is easy to see, the operator U(T, A;x) is completely continuous with respect to the
variables T, A and x. Represent it in the form of a sum

UT. Ay x)=V(T,x + o(T, A; x),
where

V(T, M)x(1) = e x(T),

E
o(T, s x)(F) = j et-940) g[A, x(s)] ds.
0
Because of the assumption (3), a(4, x) is the function of higher order of smallness than |x||
uniformly with respect to A from a neighborhood of A,. Consequently the nonlinear operator
o(T, A: x) also has higher order of smallness than [x| uniformly with respect to T from the
interval [0, 7] and A from a neighborhood of 4.

Now verify the lemma’s conditions relating to the linear operator V(7 A). First, let us clarify
the spectral properties of V(T, 1). Since for each T and A the linear operator V(T A) is
completely continuous then by virtue of the Reisz—Schauder theory all the points of its spectrum
(possibly, except the point 0) are eigenvalues of a finite multiplicity. Let x be a nonzero
eigenvalue of the operator V(T, 1) and let x be the corresponding to x eigenvector. This means
that kx = V(T, A)x or what is the same

kx(f) = e x(T) (x(r) #0).
From this equation we conclude

kx(T) = e™Nx(T) (x(T) #0).

Hence k # 0is an eigenvalue of the operator V(T 4) (and x(¢) is the corresponding eigenvector)
it and only if x is an eigenvalue of the operator e’*™® (and x(7) is the corresponding
eigenvector). From this one can see that the order of the eigenvalue x # 0 of the operator
V(T, 4) is the same as that of e’ Likewise it can be seen that the multiplicity of the
eigenvalue k # 0 of the operator V(T, 1) is the same as that of 7%,

Let us show that 1 is the cigenvalue of the operator e7#4(*0) _where T, = 2m/w,, of the order
and multiplicity 2. As is known (see, for example, [8]) 1 is the eigenvalue of the operator
e o4 if and only if there exists an eigenvalue u of the operator A(4,) such that

efot =1, (5)

Moreover, the order and multiplicity of the eigenvalue 1 are equal to the sum of the orders

and multiplicities respectively of all the eigenvalues of the operator A(4,) which satisfy (5).
From this and from the equality T, = 2/w, we get

2k

u= = ikw, (=0, 21, £2,...) (6)

1]
In virtue of the various theorem’s condition the operator A(4,) has exactly two (simple)
eigenvalues which satisfy (6). They are iw, and —i@,. Thus 1 is the eigenvalue of the operator
e’ and also of the operator V(T, 4,), of the order and multiplicity 2.
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Let us show that 1 is the eigenvalue of simple structure. Let u(4) be the continuous branch
of eigenvalues of the operator A(A) passing for A = A, through the eigenvalue imy, and let
z(A) = g(4) + ih(2) be the normed continuous branch of eigenvectors of the operator A(A)
corresponding to u(4). Then

A(ANg(A) + ih(2)} = u(A)g(A) + ih(A)}.
Rewrite this complex equality for 2 = A in the form of two real equalities
A(4o)g(Ao) = ~woh(dy), A(A)h(Ay) = weg(Ao).

From the latter equalities one can easily see that the vectors g(4,) and h(1,) are linearly
independent. Consequently the vectors g(A) and k(1) are linearly independent for all the
values of A close to A,

Let us set
k(T, ) =eTHd)
g(A; 1) = e"® g(2), (7)
h(A; 1) = e h(A).
Then

e Nig(A; T) + ih(2; T)} = (T, AMg(A; 1) + ih(A; D)},

Hence by definition of the operator V(T, ) the eigenvalue 1 = x(Ty, 4,) is of simple structure
and k(7 A) is the continuous branch of eigenvalues of the linear operator V(T, i) passing for
T =T,=2a/wy, A =4, through the cigenvalue 1.

To complete the verification of the lemma’s conditions it remains only to construct required
Jordan curves. Denote the rotation of a vector ficld @ on the boundary L of some region by
w@, L).

Let us represent the function (7, 1) in the following form (see (7))

k(T,A) =1+ {Tu(A) — 2ni} + o(Tu(X) — 2si). (8)
Note now that if for some Jordan curves {L,} converging to the point {T, i} the non-cqualities

be fulfilled, then in virtue of Rouche’s theorem (see [8]) and the representation (8), for each
sufficiently large n the following relations should be fulfilled

y(1 = k(T,A), L,) = y(2mi — Tu(r), L,) #0. (10)

Therefore, it is sufficient to construct such curves {L,} that the non-equalities (9) would be
fulfilled.

By virtue of the theorem’s condition the function Re u(1) changes the sign in every
neighborhood of A,. Hence there exist A, , A, — 4, such that

Re u(2,) <0, Re u(4, ) =0.
Denote max|wq — Im u(A)| for A from the interval [, , ;] by m, and set
T: 2 Ti = 27

oy +m, + 10 wy—m, — 1/n
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Let us consider the Jordan curve L, that is the boundary of the rectangle T€ [T, T/},
AE[A,,Af].Since A, , At = Agand T, , T} — T, = 27/ w, then L, tends to the point {7}, A.}.
Besides, one can easily see that

Re{2mi — Tu(A) =0 forTe[T,.Til.A=4;;
Re{2mi — Tu(d) <0 for TE[T,,Tr],A=4};
Im{27i — Tu(i) >0 forT=T,,A€[A;,A}];
Im{2mi — Tu(A) <0 forT=T!,AE[A;,A}]

These inequalities show that the vector field 2i — Tu(4) does not vanish on L, and that on
opposite sides of the rectangle L, vectors of the vector field 27i — Tu(A) are not identically
directed. Hence the relations (10) are valid (see, for example, [8]).

So, the operator U(T, 4; x) satisfies all the conditions of the lemma. Therefore, there exist
T,— 27/wy, A,— Ay and nonzero fixed points x,, of the operators U(T,, A,: ) such that x, — 0.
The functions x,(f) are the periodic solutions to be found.

The theorem is proved.

5. PROOF OF THE LEMMA

We shall prove the lemma in three steps. First, we shall obtain some auxiliary properties of
the operator U(v, x). Then we shall get a number of estimates of the vector field @, (x) =
x = Ulv,(x). x], where »,(x) is a specially constructed nonlinear functional. Finally, we shall
show that for each sufficiently large n the vector field @,(x) has at least one singular point
x, #0 (i.e. ®,(x,) = 0) and, what is more, x,— 0 and v,(x,) — v,. Denoting »,(x,) by v, we
shall derive from this what is required: x, = U(»,, x,), where x,— 0 (x, # 0) and v, — v,.

Step 1. Let P denote the spectral projector of the operator V(v,) onto the generalized
eigenspace of the eigenvalue 1. As mentioned in Section 3, P commutes with V(v,), however
one can easily see that generally speaking P does not commute with V(») for v # v,. Yet it
turns out that without loss of generality one can assume that

PV(v)= V(»)P. (11)

Moreover, if u(v) is a continuous branch of eigenvalues of the operator V(v) passing for v =
v, through 1 then without loss of generality one can assume that in (4) the vectors g(v) and
h(v) do not depend on v:

V(v){g + i} = u(v)ig + ih}. (12)

Let us prove it. Choose in the complex plane a closed curve vy interior of which contains 1
and does not contain the rest of the spectrum of V(v). Then for all the values of v sufficiently
close to vy Riesz’s formula defines the projector P(v) (P(v,) = P) that commutes with V(v)
(see Section 3).

In virtue of the lemma’s condition the multiplicity of the eigenvalue 1 of the operator V()
is equal to 2. Therefore, the vectors g = g(v,) and k = h(v,) (see (4)) form a basis in the two-
dimensional subspace PE. Denote the linear operator defined on PE that transforms the
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vectors g and A in the vectors g(v) and A(v) respectively by H(v). Set
Q(v)=[I—P(v)|[I— P]|+ H(v)P.

It is easy to see that Q(v,) = 1. Hence the operator Q(v») for v = v, has the bounded inverse
operator. Let us show that the operator Q(v) has the bounded inverse operator defined on E
for all the values of v sufficiently close to »;. To prove this let us note that for every v the
operator Q(v) — [is completely continuous. Therefore, in virtue of the Riesz—Schauder theory
Q(v) has the bounded inverse operator if and only if 0 is not its eigenvalue. Supposing the
contrary one can find x, (||x,|| = 1) and »,— v, such that Q(v,)x, = 0 or, what is the same,

1= P(v)IlI - P, + H(v,)Px, = 0. (13)
Rewrite this equality in the following form
Xp = P(Vn)xn - P(Vn)‘pxn + Pxy— H(I’”)wa

Since the linear operator P(»)x is completely continuous with respect to » and x (see Section
3) then from the latter equality compactness of the sequence {x,} follows. Therefore without
loss of generality we can assume that x,— x, where |lx.| = 1. Taking the limit in (13) we
obtain

xe = (I — P){! — P)xy + Px, =0.

We have come to the contradiction.

Thus, for v close to v, there exists the linear bounded operator Q '(v) defined on E. The
linear operators P(v) and H(v) are strongly continuous, i.e. the functions P(v)x and H(v)x
for each x are continuous with respect to v. Therefore the linear operator Q(v) is strongly
continuous, and so is O '(v).

Let us consider now the operator

Ulv,x)=0Q "(v)U[v, Q(»)x].

Because of strong continuity of the operators Q(v) and Q~'(v) the operator U(v, x) possesses
the same properties of continuity and “smoothness™ at zero as U(», x) does. Namely, U(v, x)
is completely continuous with respect to both the variables and it can be represented in the
form

U(v,x) = V(¥)x + (v, x),

where V(v) = Q7 '(v)V(»)Q(v) is the linear operator and where #(v, x) = o(|x||) uniformly
with respect to v. Direct verification shows that for all » close to v the linear operator 1;'(1/)
commutes with the projector P and, what is more, satisfies the condition (12). Finally, the
sequences {x,} and {v,} satisfy the conditions x, = U(v,, x,), v,— vq, x,— 0 (x, # 0) if and
only if the sequences {£,}, {v,}, where £, = Q"'(»,)x,, satisfy the same conditions for the
operator U(v, x): £, = U(v,, £,). v,— vy, £,— 0 (£, # 0).

So, without loss of generality one may assume that for the linear part of the operator U(v, x)
the identities (11) and (12) are valid.

Remark. When outlining in [4] the proof of the theorem we by mistake asserted that the
projector P(v) and the linear operator Q(v) depend on » continuously with respect to the
norm of the operators. Of course, this is not true. The way to correct the mistake has been
demonstrated above.
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Step 2. Let us set Eq = PE and E' = (I — P)E. In what follows it will be convenient to interpret
the Bannach space E as the Cartesian product E = E;; x E" of its subspaces £, and E". In this
case without loss of generality one may assume that |x| = |Px| + ||[( — P)x|.

Let us consider for each n a cylinder , = B, x B" in E where

Bn = {X = EU: ||x —qnE

| < iq./gl}
B"={x€ E": ||x]| < iq.lgl}

and where the numbers g, > 0 will be defined later. Without loss of generality one can assume
that |g| = 1. then

. <|x|<3q, for xe€Q, (14)

These inequalities show that ©, does not contain the zero point.

The boundary 4B, of the ball B, in the plane E; is a Jordan curve. Therefore (see, for
example, [9]) for each n there exists a homeomorphism »,(x) of the ball B, onto the closure
D, of the bounded component of connectedness of the set R?/L,.

Let us consider for each n a family of a parameter-depended vector fields

W.(t.x)=R,(t,x)+ 8,0, x)+ T,(t,x),
where ¢ € [0, 1] and where
Ry(t,x) ={I = V[v,(Px)[Htg,g + (1 — )Px},
S,(t,x)={—-V[tvy + (1 - v, (Px)]}I — P)x, (15)
T.(t,x)=—(1—1)o[v,(Px),x]
We should like to define g, > 0 in such a way that W,(t, x) # 0 for all ¢t from the interval

[0, 1] and x from the boundary of the cylinder Q,. To do this we shall obtain some estimates
of the operators R,, S,, T,.

Estimate of R,(t, x)

In virtue of the lemma’s conditions the rotation of the vector field 1 — u(v) on L, is defined.
Hence u(v) #1 for v € L,. Then for v € L, and x € E,,, x # 0 the following non-equality is
valid

x = V(v)x #0. (16)

Indeed, let us suppose the opposite. Then for a certain v € L, the operator V(v) has the
eigenvalue 1 with the eigenvector belonging to E;. On the other hand the restriction of the
operator V(v) to its invariant subspace E; has exactly two eigenvalues (see (12)), u(») and
i(v), and these eigenvalues are not equal to 1 for v € L,. We have come to the contradiction.
Consequently (16) is valid.

By virtue of (16) there exists r, > () such that

[[Z = V(2)|Px|| = r,||Px|  for vEL,.XxEE,

By definition, v,(x) is a homeomorphism between B, and D,. Therefore, v,(Px) € L, when
x € 8B, X B". Consequently
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IR, (&, %)| =} = Vv, (Px)]Hrq,.g + (1 — ) Px}|
=1, ”tqng + (l = f)PJC|I

for x € 9B, x B". Here, by definition of B,, for all 1€ [0, 1] the norm |ltq,g + (1 — £)Px| is
greater than q,. Thus

|R,.(t, x)|| = 8r.q, forx €48, x B". (17)

Estimate of 8,(t, x)
Let us show that for a certain r. > 0 and for every v sufficiently close to v, the following
inequality is true

Il = V())x|| = ralx] forx € EV. (18)
Indeed, supposing the contrary one can find v,— v, and x, € E%(||x,| = 1) for which
Xn =~ V(I’n)xn — 0. (19)

Due to complete continuity of the operator V(v)x with respect to both the variables we can
assume without loss of generality that V(v ,)x, — x.. Then from (19) it follows that x, — x,
and hence x. € EY, ||lx.|| = 1. Taking the limit in (19) we obtain

Xe = V(Vﬂ)x*.

This equality means that in the subspace E” the operator V(»;) has an eigenvector cor-
responding to the eigenvalue 1. The latter contradicts the definition of the subspace E”. This
contradiction proves the inequality (18).

By the lemma’s condition L,— vy, therefore D,— vy At the same time v, (x) € D, for
x € B,. Hence in virtue of (18) there exists #, > 0 such that

{1 = VItvo + (1 = v, (P}l = ralx]
for n=ny, x € E'. Then forn=ny, x EE
I = VItve + (1 = Qv (PO — P)x| = re[|(1 — P)x]|.
If here x € B, X 3B" (where dB" is the boundary of the ball B") then ||({ — P)x|| = q,. Hence
[S,.(¢, ¥)|| = 4rvq. forn=n,,x € B, X §B". (20)

Estimate of T,(t, x)

By assumption, v(v, x) = o(|x||) uniformly with respect to v from a neighborhood of v,,.
Hence there exists a nondecreasing positive function ¢(f) (¢ > 0) such that ¢(tf) — 0 when t— 0
and such that

lo(v, xl| < [lxflcClx])-
If here x € Q, then by (14) ||x| < 8q,. Therefore,
I T2, )| < 3q,¢(3q,,) forx€ B, x B". 1)
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Finally, let us choose ¢,. We shall choose g, > 0 in such a way that the following inequalities
would be fulfilled

R, (t, )| = |PT,(t, x)| forte]|0,1],x EaB, x B", (22)

IS, (2, )| = ||(I = P)T, (¢, x)|| forr€[0,1],x € B, X dB". (23)

Evidently this can be done. Indeed, by virtue of (17), (20) and (21) the inequalities (22) and
(23) will be satisfied if the following inequalities are fulfilled

Er!lqﬁ } %QH ||P||C(%qﬂ)"
i+ G, > 3q,||I-Pllc(q.,).

But the latter inequalities can be satisfied at the cost of a choice of g, > (. Besides, the
sequence {g,} can be chosen in such a way that g,— 0.

Now, let us show that for g, chosen in such a manner the vector fields W, (¢, x) do not vanish
on the boundary of Q,. Indeed, the boundary of cylinder €, = B, X B" is the union of
two sets, 4B, X B" and B, x dB". We shall show that PW¥,(t,Rx) # 0 for x € aB, X B" and
(I — PYW,(t,x) # 0 for x € B, X 4B". Then for all x from the boundary of €, the non-equality
W, (¢, x) # 0 will be fulfilled.

Let x € 4B, X B". Since the projector P commutes with the operator V(v) (see step 1) then
by (15) the operator PW,(t, x) can be represented in the form

PW,(t,x) = R,(t,x) + PT,(¢, x).
Therefore, by (22)
[P, (t, )| = |R.(t, )| = [|PT,(z, x)| forx € 4B, x B".

From this it follows that PW, (¢, x) #0 forx € B, X B".
Analogously, from (23) it follows that (I — P)W¥,(r,x) # 0 for x € B, X aB".
So,

W, (t,x)#0 forre[0,1], x€aQ,. (24)

Step 3. Let us prove that the vector field ¥,(0, x) = ®,(x) has a singular point x, € Q, (i.e.
®,(x,) = 0). Then the following relations would be fulfilled (see (14))

%qﬂ g i|x?i || __‘:-l._‘_ %er: V!‘l = VJ'!(PXRJ E Dﬂ'

By construction of g, it follows that x,— 0, x,, # 0. Owing to the lemma’s conditions L, tends
to vg, then D, also tends to v, and therefore v,— »,. Finally, by definition of @, the equality
®,(x,) = 0 can be rewritten in the form

x,=Ulv,,x,) where v, = v,(Px,).

Thus, the lemma will be proved if ¥(0, x) = ®,(x) has a singular point in €,. To prove this
let us estimate the rotation of the vector field W, (0, x) on 9Q,. For each n the vector field
W, (¢, x) is completely continuous with respect to both the variables ¢ and x (by definition [3],
this means that the operator W, (¢, x) — x possesses this property). This follows from the
complete continuity with respect to » and x of the operators V(»)x and v(v, x) (see (15)).
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Then on the grounds of (24) (see, for example, [3, 8])
AWL(0 ), 39,) = (W, (1, ), 02,). (25)
By virtue of (15) the vector field W (1, x) has the form
W, (1,x)=R,[1, Px] + S,[1, (I = P)x]
where
R,(1,x) = q,{I = V[, (Px)]}g. (26)
S (Lx)={-V(r)}I— P)x. (27)

Since P commutes with V(v) (see Step 1) then R, (1, x) € E;, S,(1, x) € E”. Therefore, on the
grounds of the theorem on direct sum of vector fields (see, for example, [3]) the following
equality is true

Y(an(l: b dQn) = ‘/(Rn(ls ") aBR) ) Y(SH(L ) aB")' (28)
Let us estimate the factors in the right-hand side of this equality.

By definition of the projector P the spectrum of the restriction of the linear operator V()
to E" = (I — P)E does not contain the point 1. Therefore [3],

7(Sa(1, -),8B") = Al = V(v),0B") = = 1. (29)
By virtue of (12) and (26) the operator R,(1, x) has the form
R,(1,x)=q,{1 = Re p[v,(Px)]}g = g, {Im p[v,(Px)]}h.

From this one can see that the operator R,(1,:):B,— £, can be represented as the
superposition

R.(1,-) =G, o{l - u(ov,

of the operators v, : B,— D,, 1 — u(-): D,— C' (C! is the complex plane) and G,:C'— E,
where G,(§ + i) = g,&¢ + q,Ch. Since the first and the third operators are homeomorphisms
then [3]

?(R,(1, +),8B,) = = v(1 = u(-), L,). (30)

By virtue of the lemma'’s conditions the right-hand side of the latter equality differs from zero.
Now, substituting (29) and (30) in (28) and afterwards substituting (28) in (25) we obtain

Y(W,(0, +), 8Q,) #0.

As is well known (see, for example, [3, 8]) it follows from the latter non-equality that the
vector field W, (0, x) = ®,(x) takes the zero value in the region Q,.
The lemma is proved.
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