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l . INTRODUCTION

QulTE a number of investigations are devoted to the problem of generation of small periodic
oscillations of the system of ordinary differential equations

( l )

depending on a parameter (for an enensive biblioeraphy see [1]). The great€r part of these
investigations exploit information about not only the linear terms of the righthand member
of the system (1), the bear operalor Fl(i,0), but also information about the terms of higher
orders in the Taylor cxpaDsion in r of the fun€tion F(,1. 'I). With the hclp of such information
one can answer the questions ot the number of arising self-oscillations. their stability. ther
dependence on a parameter, etc. Proofs of corrcsponding assertions use, as a rulc. an analvtic
technique such as vaded forms of the implicit function theorcm, the rheory of invari.rnr
manifolds- and the like.

At the same time, in problems arising duringthe study ofcoInplicated physical. technological.
etc. processes, often the only rather complete inlormation available is that conccrnjng the
linear terms of the righthand member of the system ( I ) . In sucb circumstances it is vcry difficult
to apply an analytic technique for studying the problern of gcncratior of self-oscillations.

Yet as things turn out {21, in some cases the very fact of generation ot small self oscillations
can be picked out of inforrnalion about the lincar terms of the right-hand membcr of the
systcrn (1). Of course, under lack of informarion about thc high order terms in the Taylor
expansion in.r ot F(r.,.r) oDe can say next to nothing about properlies ofadsing self,oscillations.

This article contains a topological proof of the Hopf theorem. In this proof the method of
parameter functionalization [3]. introduccd by Krasnosel'skii in another situation. has much
signilicance. Employment oftopological considerations makes it possible to throw aside usual
assumptions of differentiability of the right hand member of the systcm ( l). This provides an
opportunity to investigate syslcms (l), thc right-hand side of which conrains, for example,
hysteresis-type or relaytype nonlinearities. The proof presented below goes rhrough withour
changes in thc case of functional differential equations wjth lagging argurnents [4]. We do not
present h€re the exact formulations ofsuch assertions because ourpurpose is the demonstration
of the method. ln [5,6] the method of parameler functionalization has been applicd to the
investigation of bifurcation of long-periodic solutions of difterential equations and mappine\.
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2 THE MAIN RESULT
From now on we shall assume that rh€ parameter,i in rhe system (1) is real.
We shall say that for r. =,10 generation of small pedodic soturions of the s)ltem (1) with

periods close to Io takes place, if for every E > 0 there exists a ,t. in the interval (,{0 , €.
,10 + E) for which the system (l) has a nonzero l:-periodic solution .y.(1) ( lr. - r0 < ,) lying
in the €-neishborhood of zero

1,.0) <.
Let us suppose that the righl-hand member of rhe system (1) depends conrinuousllr on,t

and r in a neighborhood of the point {10,0} € Rt x R" and admirs a representation of the rorm

F(^' r) = A( \)x + s(1' r) '

where ,4(,t) is a matrix and where the remainder ierm d(,1, r) satislies the condirion

(2)

(3)r ' . '9 i l l :o
r l

uniformly with respect to i. Then as is easy ro see the matrix.4(r.) depends continuously on
,t in a neighborhood of ,10 and the tunction a(,i,-r) depends contiruously on i and r ir a
neighborhood of the point {,1.0,0}.

L€t the matix ,4(,t0) have the purely imaginary eigenvalue irdo ((,0 + 0) which is simpte.
Then as is knoqn for,t close to ,10 the matrix A(.1) has a unique eigenvaluc t(,1.). thar is clos€
to i.r0. Moreover, the function t(,1) depends continuously on ,t in a neighborhood of,10.

THEoREM. Let the matrix,.l(.,,0) have no eigenvalues of the forrn 0, t2irro. 13lojo, . . . and
let the real part Re!(,1) of the eigenvalue p(,t) rakes values of opposite signs in every
neighborhood of,to.

Then for iL : ,.0 generation of small periodic solutions of the syslen (1) with periods close
to 2rloo takes place.

The idea of the proof of the theorem (rhe method ofparameter functionalizatior) is a fairly
simple one. First, x'e reduce the problem of the exisrence of periodic solutions of the system
(1) to the problem of the existence of solutions of some operator equation

t U( v.  r \

that depends on the two-dimensional parameter / : {f. r.} where fis ar unknown period of
a pe odic solution to be found. Afterwards we construct such a sequence offuncrionals {/,(r)}
that for each r the rotation of the vector field r - L{r,('I), -rl on rhe boundary of some region
O, (0 + O,) is not equal to zem. Then the operator L,l /i(-r), -tl has ar least one nonzero fixed
point r" in the region Q,. Evidertly, this point is a nonzero solution of the equation

r :  Ulv",  x)

\thete v,: lT", 1,1= y,(i,). It follows from this that fo' i = i, the sysrem (1) has a norzero
periodic solution r"(/) with the period 2,. The functionals /,(-r) and the regions O" can be
constructed in such a way that Q, + 0, I,,(4,) + {2d.r0, ,f0}. Hence ,." > Ao, T^+ 2rrl@t)aft
the amplitudes of the correspondiDg periodic solutions.r,(t) tend to zero.



3. ?RELIMINARIES

Consider in a real Banach space E a iincar bounded operator y(/) which depends on a
parameter / from a Banach space N. Ler the operator y(,/) 'I be completely conrinuous as an
operator liom N x li into E. then the principal spectral properties of y(z) are the same as if
y(r) depended continuously on / wjth respecr to the norm of the operarors. This is a simple
butimpoftant fact, since lincar operators naturallya sing in the theory of differential eq uations
in some cascs do not possess the property of continurry on ,, wirh respecl ro rhe norm of the
operators but do possess the propcrty of complete conrinuity on / and r. To a far g:eater
extert the same is valid for operators arjsing in the theory ofdifferential equalions with lagging
argumen$.

[7let 
us descdbe some spectral properties of the opcrator V(/). For details and proot\, see

The basic spectral property of the opcrator y(/.) contained in the facr ihat the spectnm of
y(i/) depends continuously on / in rhe Hausdorff metric.

If !0 is an isolated cigenvalue of the operator y(/0) rhen rhe Riesz's formula

where y is a closcd curve in the complex plane with !o in its interior and rhe rest of the
spectrum of y(/0) in its exterior, delines for y = /0 the real projector onro rhe generalized
eigenspace of p0. In virtue of continuity of the spectrum of y(/) for every / close ro /0 thc
same formula defines sone projector P(/) that comlnutes with y(/). Hence P(/) is projected
onto some y(/)-invaiant subspace of the space E.

Rewrite Riesz's formula in the cquivalent form

?araneter functionaltation h the Hoot biluication Drobled

From this one can easily see that P(/)'I, the same as V(z)r, depend complerely continuouslv

From the above properries of thc projector P(/) and ofthe specrrum of y(/) one can dcrive
in a gereral way the other spectral properties of y( /). For example , if p0 is a simple eigenvalue
of the operator r(/0) then the / close to /0 the linear operaror y(/) has a unique eigenvaluc
p(/), that is close to p0. This eigenvalue is simple, it and its eigenvector depend continuouslv
on the parameter. If the eigenvalue l,0 is nor a simple one then for values of / close to lro rhe
operator y(/) has not one but, generally speaking, a group of eigenvalues, that are ciose to
t0. The sum of the multiplicities of these eigenvalues is equal ro rhe multipliciry of !0.
Behaviour of these eigenvalues is highl], complicated. Fo. example, they may join. bifurcare.
change the order, etc.

We are most intcrested in the case xhen t0 is a real eigenvalue of the order and mulriplicity
2. In this case we shail say that !0 is the eigenvalue ofsimple srructure if in some neighborhoocl
of /0 there exist continuous linearly independent real vecton 8(r,) and ft(/) and a function
p(/) (complex, generally speakjng) such rhat

v(!)\8(v) + ih(vlt = p(!){8(y) + ih(u)|. (4)

r t , t  :  ru{} ,1,)yt  v(y, ,v(v) d } .
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In this case we shall call the function p(/) the continuous branch of eigenvalues passing for
/ = /0 through the eigenvalue of simple stmcture p0.

Let us pres€nt an €xample. Let y(r0) have the simple eigenvalue 2ri and have no eigenvalues
of the form 0, !4ni, !6fii,. .. Then the eigenvalue 1 of the linear operator ev('d has the
order and multiplicity 2. This eigenvalue is of simple structure.

Let us consider an operator U(/,-r) which is defined on a neighborhood of a point
{v0,0}e R'zx E and takes values in a real Banach space E. Let the operator U(/.r) be
completely continuous with respect to both variables and admit a representarion of the tbrm

uO.x\:  v(y)x + D(y,r) .

where y(/) is a linear bounded operator and where the remainder telm o(r.r) satisfies thc

, .  l , ( , , ") l  . .Im 
-=U, 'o 1.r

unifbrmly with respect to r, fron a neighborhood of /0. We should like to notc that under
such conditions both the operators, y(/)i and ,(/,,y) dep€nd completely continuously on /
and 'I Gee, for example. [3D.

LEMMA. Let 1 be the eigenvalue of the order and multiplicity 2 of the linear operator y(/0)
and let this eigenvalue be of simple structure. Let in 1l? a sequencc of Jordan curves L-,r
converging to /0exist. Let the rotation ofthe vector field I !( /), wherc t.( /) is the continuous
branch of eigenvalues passing through thc eigenvalue 1, be defined and noa equal to zero on

Then there exist v"+ vn and 4+0 (t"* 0) such that.r, = U(/", i,,).

This lemma plays an important role in the proof of the theorem. A generalization of this
lemma for the case of r-dimensional parameter see in [4]. The proof of the lemma will be
presented in Section 5.

,1.  PROOF OF THE THEOREM

Let C([0, 7]; R") denote the Banach space of continuous R^'vaiued functions defined on the
irterval 10, rl, where r - 2t/.r0 + 1, lvith the topology of uniform convergence. Consider in
C([0, r];R') an operator of tbe form

t(/  'a:r l ( r l=e* r( / , )+ [ 'e"  *  
'1 ' r ' .  

r1 ' , )10'

whicb depcnds on two r€al parameters rand r.- Here,4(,1) is tbe linear term and rr(/,,r) is tbe
remainder term Gee (2)) of the righthand member of the system (1).

Direct verification shows that r c C(10, rl; R') is a fixed point of the operator U(?,1; ) if
and only if i(t) is a solution of the systern (1) that satisfies th€ condition .r(0) = r(I). This
condjtion means that x(/) is a l-periodic solution ofthe system (1). Hence the theorem would
be proved if there existed T"+h/ar and 

^"+10 
such that the operators U(r^,,1,; .) had

nonzero fixed points -r, converging to zero. To prove it we shall use the lemma.
Let us vedfy if the operator U(?, ,1;'I) satislies the l€mma's conditions.
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the operator U(7',1;.r) is complerely continuous with respect to the
Represent it in the form of a sum

u(.r.1; x) = v(.7,^)x + D(7,1;x),

Y(2,,t)r0) : erau) r(7'),

er, t  ' ( ,) r l t ,  rG)1dl.

(r(0 - e,i(r) r(7)

From this equation we conclude

Kx(T) = erAQ)r('r)

Hence I( + 0 is an eigenvalue ofthe operator y(2. ,t) (and r(/) is rhe corresponLting eigenrector)
if ard only il r is an eigenvalue of the oner.rror eful ) (and r(I) ir the iorrerponding
cigenvector). From this one can see that the order of the eigcnvalue r + 0 of the ;oeraror
y(?', r) is the same as that of er!(i). Likewse rr crn be se;n lhji the muhioli(ir\ oi the
eigenralu( K-0 ot  th(  opcrhlor I  ( / .  / l  is  lhe rame ar lhat  ot  e,"

Let us show that 1 is th€ cigenvalue ol the operator erol(10). where f0 = 2x/.d0, of the order
and mul l ip l i l i ty 2.  As is known (scc. for example, [8])  I  is the eigenvalue of rhe operator
e'" ' .  i l  and onl)  i t  lhere c\ i r l \  dn ei8envJtue u ot  rhe operaror 4(^ )  \u(h rhar

er.', : r. (5)

Moreover, the order and multiplicity of the eigenvalue I are equal to the sum of the orders
and multiplicities resp€ctively of all the eigenvalues oI the operator,{(,10) which satisfy (5).
From this and from the equality I0: 2Jr/.r0 we get

2rki
t t :  

^ 

:  rkao (k:0,  a l .  !2, . .  . )

In virtue of the various theorem's condition rhe operator,4(,10) has exactly two (simpre,
eigeNalues which satisfy (6). They are ioo and -i.ro. Thus I is the eigenvalue of the operator
ero/(rd, and also of the operator f(fo, i0), of the order and muttipticiry 2.

,,fr,t:nA\: f,
Becauseoftheassumption(3),a( i , . r ) is thefunct ionofhigherorderofsmaltnessthan.r
uniformly with respect to ,t from a neighborhood of,t0. Consequertly rhe nonlinear operator
,(7,,r.;r) also has higher order of smallness than lr uniformlv with respecr to Ifiom the
inlenal lo.  r l  . ind 4 l rom a neighhorhood ol  , t ro.

Now v€rify the lenma's conditions relating to the linear operaror y(I, ,t). First,let us clarit,
the spectral properties of y(f,,l). Sinc€ for each I and ,, rhe linear operator V(?,,1) is
completely continuous then by virtue of the Reisz Schauder theory all the points of its spectrum
(possibly, except the point 0) are eigenvalues of a finite mulriplicity. Let I( be a nonzero
eigenvalue ofthe operator y( I, ,1) and let -y be the corresponding to r. eigenvector. This means
thal (I : Y(f. ,l)r or what is the same

(iG) + o).

({?) + 0).

(6)
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Let us show that 1 is t}le eigenvalue of simple struclure. Let !(,4) be the continuous branch
of eigenvalues of the operator A(1) passing for ,t =,10 through the eigenvalue i.ro, and ter
z( ) = gQ) + ih(^) be the normed continuous branch of eigenvecton of the operator /4(r,)
corresponding to t(,1). Then

A(A)k( ) + ihQ.\ = p(r,)k(il) + rn(l)].
Rewrite this complex equality for ,1 = ,.0 in the form of two reat equalities

A().o)c\ i  = -a&(^o),  A( la)h(^\r) :  @,)e(L.) .

From the latler €qualities one cat easily see rhat the vectors g(10) and ft(r,r) are linearly
independent. Consequently the vecrors g(,4) and r(,1) ar€ linearly independent for alt the
values of ,, close to ,,0.

Let us set
K(7. A) = ert't ) ,

C0; t)  = etAt l t  8Q) ,

h(.) .1t)  :  e^t ' )  h(1).

(7)

Then
etA( )ta(A; T) + ih(It r )l = K(T, 

^){Be; 
I + ih(I\ t)1.

Hence by definition of the operator y(I, ,.) the eigenvalue 1 = r.(?0, ,i0) is of simplc structure
and I((r, i) is the continuous branch of eigenvatues of rhe linear operator y(2, ,i) passing for
T = T0 = 2n/ao,, i  = 10 through the eigcnvalue t-

To complete the verification ofthe lemma's londitions it remains only to construct required
Jordan curves. Denote the rotation of a vecror licld O on the boundary L of some region by
v(o,.) .

Let us rcpresent the function I.(7,,1) in rhe following form Gee (7))

K(r,A):r+\rpQ) zri\ + o(rpQ.) 2d). (s)
Note now that iffor some Jordan curves {L,} converging to the poinr {I0, ,t 0} the non-cqualiries

f(2ri - rpQ).L,,)+o (e)

be fulfilled, th€n in virtue of Rouchc's theorem (see [8]) and the representation (8), for each
sufficiently large l? thc following relations should be fulfillcd

' .4t  -  K(7.  i t .  t  " t  -  yt2ni  rp\ i ) .L. t -O. (10)
Therefore, it is suffcient to constrxct such curves {4,} thar thc non,equalities (9) would bc
tulfilled.

By virtue of the theorem's condition the function Ret(,t) changes the sign in every
neighborhood of ,r.0. Hence rhere exist ,4;, iU + ,10 such that

Re tr(.l;) < 0, Re ll(,1;) > 0.

Denote maxloo- Imp(r.) for il from the interval [,1; , ,lj ] by /n" and set

2n Znri
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Let us consider the Jordan curve a, that is the boundary of the rectangle ?e [I;, f;],
,. € [.1;, ,1;]. Since r,;, ,i; + i0 and T; , T; + T": 2rl,J0 then a. tends to the poinr {I0, 10}.
Besides, one can easily see that

Paraneter functionalization in tbe HoDf biturcario. Drobrem

Re!2.ni Tp(^\ > 0

Rel2 Tp(.4) <0

Imt2ri - rp(,l) > 0

Iml2ni - Ttt( )<0

rot  r  €[r ;  . r t r1.1= 1;  I
Iot  r  e[r ; , r l l ,  

^ :  
1tr ;

tuT =r; , IeI ; , i | ;

for ? - Z;, , t  € [,1;, , t ]1.

These inequalities show that the vector field 2xt 4(1) does not vanish on l,, and that on
opposite sides of the rectangle L" vectors of the vector field 2rl - fu(,l) are not identically
directed. Hence the relations (10) are valid (see, for example, [8]).

So, the operator U(I,.trtr) satisfies all the conditions of the lemma. Therefore. there exist
T.+2rlt')o, L,,+ ir and nonzero fixed points.y" ofthe operators U(r,,, r,"; .) such that i,,+ 0.
The functions r.(r) are the periodic solutions to be found.

The theorem is proved.

5. PROOF OF THE LEMMA

We shall provc the lemma in three steps. First, wc shall obtain somc auxiliarv properries of
the operator U(r, r). Then we shall get a number of estimates of rhc vector field O,,(_r) =
i - a,'[/"(,r), -r]. where y,(i) is a speciatly constrrcted nonlinear functional. Finally. we shall
show that for each srfficientlt' large', the vector field O.(r) has at leasl one singular poinr
.r, + 0 (i.e. O,(.!,) :0) and, what is more, .ri+ 0 and ,,(r,)+ r,0. Denoring /,,(r.) by /, we
shall dcrive from this what is required: i, = U(/,,, i,), where ,r,, + 0 (r, + 0) and /. + /0-

Sa? 1. Let P denote the spectral projector of rhe operaror y(/0) onto the generalized
eigenspace of the e'genvaluc l. As mentioned in Section 3, P commures wirh y(/0), however
one can easily see that generally spcaking P does rot commute with y(/) for / + /0. Yet it
turns out that without loss of generalitv one can assume rhar

Moreovcr, if p(r/) is a continuous branch of eigenvalues of the operator y(/) passing for r, :
/0 through 1 then without loss of generality one can assume that ir (4) the vecrors g(/) and
ft(/) do not deDend on /:

Pv(!)  = v(!)P. (  l1)

v(y)k + ihj = !(v\{B + ihl. (r2)
Lct us prove it. Choose in the complex planc a closed curve y inrerior of which contains 1

and does not contain the rest of the spectrum of y(/0). Then for all the values of y sufficier y
close to /0 Riesz's tbrmula delines the projector P(') (P(/,,) = P) rhat commures wjrh y(/)
(sec Section 3).

ln virlue of the lemma's condition ihe multiplicity of the cigenvalue I of the operator V(/0)
is equal to 2. Therefore, the vectors 8 - g(/0) and ft : ,(zir) (see (4)) form a hasis in the two-
dimensional subspace PE. Denote the lirear operaror defined on Pf that rransforms the
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V - P(v 
^)lV 

- Pb^ + HO^)Px,, = 0. ( l r )

vectors 8 and t in the vectors g(/) and ft(/) respectively by H(/). Set

Q(.v) = I I  P(v) lV Pl + H(v\P

It is easy to see thal O(/0) = I Hence the operator Q(v) for r = /0 has the boundcd jnverse
operator. Let us show that the operator O(/) has the bounded inverse operator delined on t
for all the values of y suficiently close to /0. To prove this let us note that for every z the
operalor O(r) lis completely continuous. Therefore, in viftue ofthe Riesz-Schauder thcory
O(/) has the bounded inverse operator if and only if 0 is not its eigenvalue. Supposing lhe
contrary one can find r, ( .r, = l) and /,+ r'0 such that O(/,)r,:0or, what is thl) same.

Rewrite this equality in the following form

x,, :  P\y, ,8,  P\y, ,)Prn + Pxt H(vntPrr.

Since the linear operator P(/).y is completel]' continuous with respect to / and.r (see Section
3) thcn from thc latter equality compactness of the sequence {.y^} follows. Therefore without
loss of generality wc can assume thai i,-i* where .r* :1. Taking the lirnit in (13) we

i.  :  (1 P)(1 P).r-  + Pr- :0.

We have come to the contradiction.
Thus, for / close to /0 there exists the linear bounded operator Q r(r) dcfined on E. The

linear operators P(y) and H(y) are strongly continuous, i.c. the functions P(/)r and lt(/)-y
for each r are continuous with respect to r,. Therefore the ljnear operator 0(r) is strongly
continuous. and so is I r(/)-

Let us consider now the operator

0(, .4:  a 1(!)uly.  Q(v)t l .

Becauseofstrongcont inui tyol theoperators0(/)andOr(/) theoperatorU(r,r)possesses
tie same properties of continuity and 'smoothness" at zero as U(i/, r) does. Namely, U(/, r)
is completely continuous with respect to both the variables and it can be represenred in the
form

01v.t1- v1u1:t  .  u1v.  v 1.

where t( /) : I ! (/)y(/)0(/) is ihe linear operaror and wherc ,(/. i) : o( jr l) uniformly
with respect to /. Direct verification shows that for all / close to /0 the tinear operator t(y)
commutes with the projector P and, what is more, satisfies the condition (12). Finally, rhe
sequences {r,} and {2,} satisfy the conditions r, = U(v- x,). v^- vt). )t,,+ t) (r, + 0) it and
only if the sequences {iJ, {,.}, *le.e *,= Q r(v,)x,, satisfy the same conditions for the
operator U(/ ,r) :  i . :  U(v", i ") ,  v,+ vr,  t .+0 ( i"+0).

So, without loss of generality one may assume that for the linear part of the operator U(r, i)
the identities (11) and (12) are valid.

Remark. When outlining in [4] the proof of the theorem we by mistake asserted that the
piojector P(y) and the linear operator Q(/) deperd on / continrously with respect to the
norm of the operators. Of course. this is not true, The way to correct ihe mistake has been
demonstrated above.
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Slcp 2. Let us set E0 = PE and E0 = (1 P)E. In what fotlows itwitl be convenient to interprer
the Bannach space ]' as the Cartesian product E = t0 x E0 of its subspaces E0 and 80. In rhis
case without loss of generality one may assume that lr : ]Pi + (/ PFl.

Let us consider for each n a cylinder Qr = B. x B" in E where

B^- {xe Et) t  x -  s^s) <*s" lc } ,
B^-geEt ' :  

' l  
< +s, lc l l .

ard where the numbers./, > 0 will be defined later. Without loss ofgenerality one can assume
that 8l  :1,  then

lq,  < l j  l< 9s" for r  e Q,. (14)

(1s)

These inequalities show that Q, does not contain rhe zerc point.
The boundary tB, of the ball B" in the plane E0 is a Jordan curve. Therelore (see, for

exampie, [9]) for each n there exists a homeomorphism /"(x) of the ball B, onto the closure
D, of the bounded component of connectedness of the set n7L,.

Let us consider for each d a family of a parameter-depended vector fields

qr,0,. ! )  :  R"(t ,  r)  + S,0, i )  + r"0, _v),

where I € [0, 1] and where

R,(t, x) = U - vlv letll){tq.s + Q, - r)Px\.

s,0, r) : t1- Y[r/o + (r t)v,(Pr)lNI - P)x,
r"(t,r) = (r - t)r,Iv 

^(pr), 
xl.

We should like to deline q, > 0 in such a way ihat W,(r,.r) + 0 for all r from the inteNal
[0, 1] and r from the boundary of the cylinder Q,. To do rhis we shall obtain some estimares
of the operators R", .', f".

Estinate of R.(t, x)
In virtue ofthe lemma s conditions the rotation ofthe vector field 1 - !(/) on L, is defined.

Hence p(r) + 1 for / e 4,. Then for y e L, ar'd x e Eo, x + 0 the foltowing non-equality is
valid

x - v(.v\ +0. (16)

Indeed, let us suppose ihe opposite. Then for a cerrain ,eL, rhe operator y(y) has the
eigenvalue 1 with the ejgenvector belonging lo C0. On rhe other handlhe restriction of the
operator y(/) to its invariant subspace E0 has exactly two eigenvatues (see (12)), p(v1 ant
t(y), and these eigenvalues are not equal to 1 for / € Li. We have come to the contradictior.
Consequently (16) is valid.

By virtue of (16) there exists ,', > 0 such rhat

l [r - v(!)]Pxl > r^lP4 for

By definition, y,(r) is a homeomorphism between B" and D,. Therefore, y,(pr) € a^ when
x € AB,x Bn. Consequently
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R^(t, x) : lI - vlv 
^(Px)l{tq^s 

+ ( - t\Pxl

>r.  tq, ,g + (1- t )Pxl

forx€aB^x8".  Here,  by d€f in i t ion of  B. , foral i l€[0,  1]  thenormlr . / ,8+(1 -rPr l  is
greater than iq,. Thus

R"(t .r) l  =- i t "q" fot teaB" x B' .  (17)

Estinate of S"(t, x)
Let us show that for a certain ,'* > 0 and for evcry / su{ficientllr close to /0 the following

inequality is tme

[r - v(v\l:rl > r. rl for -Y € Eo. (18)

Indeed, supposing the contrary one can find v,- v0 and x,e Er( \ : 1) for which

x, v(y,Jx^- 0. ( le)

Due to complete continuity of the operator y(/F with respect 1o both the variables we can
assume without loss of generality that V(v,F"- r.. Then from (19) it follows that x,+.r*
and hence r* € 80. r* J = 1. Taking the limit in (19) we obtain

i-  :  v(/o).r- .

This equality means that in the subspace E0 the operator y(r0) has an eigenvector cor
responding to the eigenvalue L The latter contradicts the definition of the subspace E0. This
contradiction proves ihe inequality (18).

By the lemma's condition a,- /0, therefore D"+ v0. At the samc tirne /,(.r) € D" for
.r € Bo. Hence jn virtue of (18) there exists rl0 > 0 such that

lI vltvo + o, t)v 
^(Px))Ixl 

> r*lxl

for n > no, t e Et). Then Ior n > na, x e E

Mr ntva + 0 t)y.(P,\l|(r p)rll> r.l(r p)xl.

If here.r € B" x aB" (where aB' is the boundary of the ball B') then 1(r - p)xll : 1q^. Hence

ls"( t ,  t )  >+*q, forn>no,teB,xdB'.  (20)

Esnmak of T^(t, x)
By assumption, u(v,x): o(lxl) uniformly with respect to / from a neighborhood of /0.

Hence there exists a nondecreasing posiiive function c(r) (r > 0) such that .0) + 0 when rr 0
and such that

l , ( , , "1 < " l4l" l ) .
If here.r € Q, then by (14) li l< iq,. Therefore,

lT"(t. x)l < 

^q.c(tq 
^) 

for.r e B^ x 8'. (21)
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Finally,let us choose q,- We shall choose q, > 0 in such awalrthat th€ following inequalities
would be fulfilled
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R"(1. x)l  > lP?.(r, i)  l

s,G,.r)l > (r - P)r,(r, -t)

fo j I€ [0,  1] , . r  € aB, x B' ,

for t€[0,1] , r€8,  x aB' .

(22)

(23)

Evidently this can be done. Indeed. by virtue of (17), (20) and (21) th€ inequalities (22) and
(23) will be satislied if the following inequalities arc fuifilled

tr^q,> tq ̂ l 
r c(iq "1,

+' q,> tq ̂ lI 'P lc(tq,)
But the latter inequalities can be satisfied at th€ cost of a choice of q">0. Besides. the
sequence {qJ can be chosen in such a way that 4,+ 0.

Now, let us show thnt for q, chosen in such a marner the vector fields \y,(r, r) do not vanish
on the boundary of O,,. Indeed, the boundary of cylinder O": a, x B' is the union of
two sets, aB, x B' and B 

^ 
/. a ll . We sha show that PV"0,Rr) + 0 for .r e aB, x B' and

(1- P)V,(/,.r) + 0 for 'I e B, x aB'. Then for all r from the boundary of C^ the ron-equality
rY"(r,.t) + 0 will be tulfilled.

Ler j e aB, x B'. Since the projector P conmutes with the operator v(/) (see step 1) then
by (15) rhe operator Pry^0, -r) can be represented in the form

PV,,0, r) = R"0,.!) + Pr,0, 
').

TherefoLe, hy (22)

lP\y.0,.r) i> R.(r..r)l - lPZ,(r, r)l lor teaBn t  Bh.

From this it follows thal P\U 
"(t, 

x) +0 for x e aB. x B'.
Analogo[sly,  f rom (23) i t  fo l lows lhat (1 P)V"(t , , ] r)+0for ' I€B"xaB".
So.

v"(,, r) + 0 for t€ [0,1] ,  ; r  € aO,, . (24)

Srep 3. Let us prove that the vector field V,(0, r) = Ol-r) has a singular point r, e sl, (i.e.
o,(.r,):0). Then the following relations would b€ tulfilled (see (14))

iq.<lx.  < iq", v"= v"(Px")ED"

By construction of q", it follows that r" + 0, x, + 0. Owing to the lemma's conditions a^ tends
to y0, then D, also tends to /0, and therefore ,,+ r,0. Finally, by definition ofO,, the equality
o"(t,) = 0 can be rewritten in the form

where I,,, = ,/,(Pr,).

Thus, the lemma will be proved if rY(O,r) 
- O,(i) has a singular point in Q,. To prove this

let us estimate the rotation of the vector tield Ur,(0,r) on aO,. For each'r the vector lield
V,(t,.r) is completely continuous with respecl to both the variables t and r (by definition [3],
this means that the operator V"(t,r) x possesses this property). This follows from the
complete cortinuity with respect to v and r of the operators V(/F and o(v,x) Gee (tS)).



160 V. S. KozA(N and M. A, KRAsNosL.srn

Then on the grounds of (2a) Gee, for example, [3,8])

(v"(0 . ) ,  ao,)  = y(w,(1,  ) ,ao") .
By virtu€ of (15) the vector field V,(1,.y) has the form

v,(1,x) : R.[1, Px] + S.[t,(t  - p)x]

R 
^(r , 

x) : q ,{r v1, ,(p*)lls ,
s,(r,x) = {r - v?'r)lQ P)x.

Since P commutes with y(/) (see Step 1) then R,(1, i) € 80, S"0, -y) € 80. Therefore, on the
grounds of the theorem on direct sum of vector fields (see, for example, [3]) rhe following
eoualitv is lrue

y(w"(1,  . ) ,  ao")  = y(R"(1,  . ) ,  a8,)  .  y(s,(1,  . ) ,  aB,) .

L€t us estimate the factors in the righthand side of thjs equality.

(28)

By definition of the projector P the spectrum of the resrricrion of the linear operator V(26)
to E! = (/ P)E does not contain the point 1 Therefore [3],

(25.|

(26)

(27)

By virtue of (12) and (26) the operator R,(l,r) has rhe form

n,( i ,  i )  -  q^{1- Re r[ /  ^(P:.) ] lB 
-  q 

^{1n 
plv,(Px) l lh.

From this one can see that thc operator R,(1, ):t^+Eo can be represented as the
superposition

R"(r 
"  

)  = G 
" 

a \ \  -  P( )1to v 
"

of th€ operaton v 
" 

: B" + D,, l p(. ). D, 
- 

CI (CI ]s the complex plane) and G, : C1- Eil
where C,(€ + iq) : q"€g + q"6r. Since the first and the third operators are homeomorphisms
then [3]

y(s"(r, ),a8,) = y(I - v(ya), aB"): t  1. (2e)

r(R,(1, . ) ,  aB,) :  !  y( t  p( . ) , r") . (30)

By virtue of the lemma's conditions the right-hand side ofthe latter equality differs from zero.
Now, substituting (29) and (30) in (28) and afterwards substituting (28) in (25) we obtain

/ (w"(0,  . ) ,  ao,)  +0.

As is well known (see, for example, [3,8]) it follows from the latter non-equaljry that the
vector field W"(0,.v) : O,(r) takes tne zero value in the region Q,.

The lemma is proved.
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